
Failure to Thrive: QoS and the
Culture of Operational Networking

Gregory Bell

Ernest Orlando Lawrence Berkeley National Laboratory
One Cyclotron Road, Bldg. 50E0101

Berkeley, CA 94720
+1 510-486-6817
grbell@lbl.gov

Abstract
Understanding the culture of operational networking can help to
illuminate the question of why QoS has floundered. Network
administrators have a well-founded aversion to complexity, in
part because they experience failures attributable to design
complexity on a regular basis. I argue that IP multicast defines a
functional limit-case for deployable complexity in today’s
Internet. That limit is relevant to the deployment of QoS, since
many flavors of QoS entail equal or greater complexity.

The notion of a functional constraint on complexity draws
attention to the economic, historical, and institutional forces
which influence the fate of networking technologies. QoS will
not be compelling for most network administrators until its design
takes account of these forces.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – packet-switching networks

C.2.3 [Computer-Communication Networks]: Network
Operations – network management

C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks - Internet

General Terms
Design, Economics, Reliability, Human Factors.

Keywords
QoS, complexity, multicast, operational networking.

1. Introduction: Failure to Thrive
When a young child who ought to be gaining weight inexplicably
does not, pediatricians sometimes resort to a vague diagnosis, the
"failure to thrive." This phrase captures something we take for
granted about childhood: active thriving is the norm, and
anything short is cause for alarm.

Quality of Service (which I’ll define as the effort to engineer an
end-to-end alternative to best-effort packet delivery on the
Internet)1 has suffered for years from an analogous failure to
thrive. But should that be cause for alarm? It is not obvious, after
all, that networking protocols are like children – that they thrive
in the normal course of events. On the contrary, given the
abundance of protocols which have been standardized and the
much smaller number in common use, one might reasonably
conclude that withering away, rather than thriving, is the normal
fate of the average protocol. In the economy of networking
standards, failure is the norm, and only "failure to fail" is
exceptional.

Seen in this light, the modest success of QoS is not surprising.
And yet the failure of QoS to thrive should interest anyone who
creates, analyzes, or implements networking standards. In the
first place, that failure is significant because of the professional
stature of the architects of QoS, and the sheer volume of their
work: all told, the literature includes many dozens of articles,
Internet Drafts, RFCs, dissertations, and books. It is also
significant because the history of QoS sheds light on a structural
rift between networking operations and protocol design, the
implications of which extend well beyond QoS.

In this paper, I pursue the second point. I argue that
understanding something about the culture of operational
networking – about the daily experience of network engineers
who manage routers and switches – can illuminate the question of

This work was supported by the Director, Office of Science, U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGCOMM 2003 Workshops, August 25&27, 2003, Karlsruhe,
Germany. Copyright 2003 ACM 1-58113-748-6/03/0008S$5.00.

1For insight into the difficulty of defining QoS, see [14],
especially section 4. I return to the subject of definition later in
this paper.

why QoS has floundered. By way of disclaimer, I acknowledge
that my professional experience is wholly operational. I work in a
scientific research institution where the local-area network
contains about 80 subnets and 10,000 connected devices. My
background undoubtedly colors the observations I make and the
conclusions I advance; in particular, it explains why I have little
to say about the lukewarm reception given QoS by Internet
Service Providers.2

2. Complexity and Failure
The most important operational objection to QoS is excessive
complexity. Why complexity per se should be objectionable has
been the subject of several recent papers [6, 7, 15, 20]. The
authors of RFC 3439 have argued, for example, that the
complexity of a given architecture is proportional to the number
of components it contains, where "component" may be "a protocol
path, a software path, or a physical path." They further observe
that the scalability of a highly-complex network such as the
Internet is impeded by two properties – amplification and
coupling – both associated with nonlinear systems theory. The
Amplification Principle states that small, local fluctuations can
produce large-scale effects, while the Coupling Principle
describes the unexpected interactions sometimes observed
between seemingly-isolated features and components. Both
properties have the potential to generate failures. Although the
Internet is "resilient to designed-for uncertainties" [20], it is also
prone, as a result of its complexity, to experience "catastrophic
events." To cite a memorable phrase, it is "robust, yet fragile"
[20].

The tone of this work is suitably cautionary, but it actually
underestimates the full impact of design complexity upon the
operational stability of networks, because it tacitly assumes that
complex protocols function as they were designed to function.
The authors conceive of frailty, in other words, as the unintended
consequence of otherwise well-behaved systems interacting.

Yet I am certain that most people who administer switches and
routers on a daily basis would attribute the frailty they encounter
in networks – and they encounter plenty – to poorly-implemented
software, rather than unexpected non-linearity.3 It is the recurring
experience of network engineers that complex protocols
(especially protocols for which the constituency is small, such as

MSDP) are prone to break. Those of us who work with routers
encounter serious bugs on a regular basis; we report these bugs to
vendors; we upgrade code; and the cycle repeats. As a result, we
eventually come to presume that complex protocols will
destabilize our networks: we anticipate failure. Outsiders may
misinterpret that expectation as simple pessimism, but in fact it is
a form of hard-won working knowledge.

2On the other hand, I believe that story is relatively well-
documented compared to the corresponding resistance in the
enterprise. See [5], for example.
3Bug-related failures could be seen as instances of the
Amplification Principle, since the input (eg, a particular bit
pattern in a packet) is trivial compared to the outcome (a router
crash). My point, though, is that current discussions of
complexity in networks don’t conceive of such failures as
systemic, and therefore as important constraints on deployable
complexity. On the insufficiency of current "mental models of
the Internet’s important properties," see [12].

It is difficult to sympathize with the operational mindset I have
described without living through dozens of debugging sessions.
As a poor substitute, I want to describe the flavor of several
failures we have encountered at LBNL recently. They fall
roughly into two categories. On the one hand, there are isolated
problems which seem to strike randomly; on the other hand, there
are problems which fall into recurring patterns.

Initially, the following incident seemed to fit squarely within the
first category. Abruptly one day, all the subnets served by Router
A lost connectivity with destinations outside of LBNL:

Figure 1: simplified topology

Soon afterwards, subnets on Routers B lost connectivity as well,
followed by subnets on Router C. All hosts internal to LBNL
could communicate with each other, though. In the process of
debugging, we looked carefully at the BGP state on the border
Router Z, but there were no signs of trouble. The symptoms
strongly suggested a routing problem, but all routing tables were
normal. Eventually we discovered the cause of the failure. As
unlikely as it seems, the ARP process on Router Z had broken in
such a way that the router failed to answer address resolution
requests for its "inside" interface address. When the relevant
ARP cache entries on Routers A, B and C timed out, each lost the
ability to forward packets to its next-hop address for external
destinations.4

4OSPF state was unaffected by the failure, since the mappings
between layer-3 and layer-2 multicast addresses are static. In
this narrow sense, IP multicast is more failure-resistant than IP
unicast; but see below.

For some time, we attributed this failure to a buggy
implementation of the Address Resolution Protocol. When the
same symptoms returned two months later, though, we were able
to pinpoint the root cause of the ARP failure, which turned out to
be a route processor crash triggered by a bug in the code which
handles multicast packets. At that point, the failure took on a
different character entirely; it fit into one of the recurring patterns
I mentioned above. In the preceding twelve months, we had
experienced a series of bug-related multicast failures so consistent
it could almost be budgeted for in terms of FTE support. We had
diagnosed at least 10 serious bugs on 5 hardware platforms, and
the time required to resolve these issues was on the order of
engineer-weeks.

These bugs were not mere annoyances. On the contrary, they
affected router stability. We saw the following symptoms, and
many more:

• Router repeatedly reboots when it encounters multicast
traffic

• Router reboots when attempting to establish MSDP
peering

• Normal PIM packets cause a memory leak
• MSDP router fails to advertise active local sources
• Switch intermittently drops all multicast packets

Such incidents linger stubbornly in the memory of those who
debug them. They contribute to an expectation that every
networking protocol is encumbered with unknown failure modes.
Eventually, we concluded that implementing IP multicast required
a substantial commitment of engineering resources, and that it
would inevitably impair the stability of unicast routing due to the
need for frequent OS upgrades and intrusive testing. Many
enterprises do not have the mandate, or see a justification, for
making this commitment.5

I believe our experience with IP multicast is directly relevant to
the history of QoS, because IP multicast defines a limit-case for
deployable complexity in today’s Internet. It is important to
stress that the limit is functional. Multicast is not intrinsically
"too complex" to be implemented reliably, in other words – but
that is not the issue. The issue is whether multicast can be
implemented reliably given the extra-technological factors that
constrain the success of actual deployments. These factors are
numerous, and they include:

• inadequate quality assurance by vendors
• lack of a critical customer mass and a limited market
• finite staff time for troubleshooting
• scarcity of debugging tools
• limited skill-set of operational engineers
• lack of trust between neighboring domains

If IP multicast represents a limit-case for deployable complexity,
the implications for QoS are serious. Intuitively, it seems clear

5For more on this point, see [10].

that the Integrated Services architecture – with its requirement
that routers (even core routers) keep end-to-end per-flow state,
and that reservation set-up "be fundamentally designed for a
multicast environment" [4] – presupposes a level of complexity
significantly higher than that of inter-domain multicast routing.
The vexing challenges of multicast apply to Integrated Services,
but there is an additional requirement to manage (and inevitably
debug) packet scheduling, admission control, classification, and
reservation setup.

The relative complexity of the Differentiated Services
architecture is harder to assess, largely because of its greater
flexibility. Diffserv aims to achieve scalability by "aggregating
traffic classification state" through "IP-layer packet marking" [3],
and it can be implemented on a very modest scale, perhaps "at a
single bottleneck" [8]. Such minimalism is a far cry from the
Grand Unified style of QoS exemplified by Integrated Services,
and it also presents fewer operational risks.6 However, it is
doubtful that minimalist Diffserv can provide the rich service
model envisioned by most QoS advocates and architects. As
Geoff Huston points out, the simpler architecture is still
incomplete in many respects, especially in regard to "end-to-end
signaling facilities" for functions such as resource availability
discovery and service requests [14; also see 2 {section 4.2.7}].
Diffserv signaling protocols – which include, in one proposal, a
network of "brokers" for end-to-end bandwidth allocation [16] –
add significant complexity to the bare, minimalist model, as does
the prospect of enlarging the Diffserv domain from a single router
to a densely-interconnected set of network clouds under different
administrative control.

My aim is not to make a definitive judgment about which of these
architectures is more complex, but to suggest that forces currently
impeding the scalability of IP multicast routing (including a
complicated control plane, a shortage of knowledgeable
operational staff, and a scarcity of debugging tools) also impede
the deployment of QoS. To be sure, recent QoS architectures are
simpler [9, 18], but this reduction in complexity may ultimately
be compromised by the necessity to make QoS secure against
denial-of-service attacks, as well as resource "theft" [1, 11, 14].

The notion of a functional constraint on complexity tends to draw
attention to the economic, historical, and institutional forces that
influence the fate of networking technologies. These forces –
which include the cost of router interfaces, the market for wide-
area connectivity, the rate of broadband penetration, the demand
for real-time applications, and the average skill-set of network
administrators – receive scant attention in the literature on QoS. I
think it’s fair to say that protocol designers have not been very
attentive to them generally. This neglect is particularly ironic,
because the professional life of anyone affiliated with computer
networking in the past decade has been buffeted by economic and

6Implementing Diffserv on a limited scale, though, does carry the
danger of relocating the offending bottleneck to another link
immediately outside the QoS domain [5].

historical surprises: the explosive growth of HTTP traffic, for
instance, or the rise and fall of the dot-com bubble.

Attempting to architect QoS without taking into account its
economic and institutional context is roughly analogous to
designing a city without reference to local culture, climate or
geography. In either case, the likely result is a conspicuous
failure to thrive. One might argue that architectural design work
should remain untainted by such concerns, and to a certain extent
this view is appropriate and salutary. But carried to an extreme, it
can lead to the standardization of overly-complex technologies
with little chance of deployment in working networks.

What would it mean to think about QoS in relation to the forces I
have described? Again, let’s consider the culture of operational
networking, which eschews complexity and anticipates failure.
When evaluating complex services, network engineers ask
practical questions, and a full understanding of the fate of QoS
requires us to take these questions seriously:
1) What does my network (which is currently stable and
comfortably-provisioned) have to gain from enabling this
technology?
2) Can it be incrementally deployed?
3) Are there good debugging tools?
4) Can I debug it without impacting best-effort service?
5) While debugging, do I need the active cooperation of engineers
from other domains?
6) Are the benefits sufficiently compelling to compensate for the
potential pain?
7) When it breaks, will I be blamed?
8) Am I likely to be caught in the middle of disputes regarding
whose packets receive better-than-best-effort service?
9) Will I be asked to investigate very transient, vaguely-defined
symptoms which users attribute to the failure of QoS?
10) Will this project become a black hole for my time, or that of
my staff?

QoS will not become compelling for the majority of network
administrators until it can offer persuasive answers to these
questions. And it will not develop persuasive answers to these
questions until its design addresses the operational and economic
forces likely to impede its deployment. One such force, for
example, is continuing downward pressure on the price of
bandwidth, in local and wide-area networks alike.

3. Throwing Bandwidth
The primary operational response to the problems which QoS
aims to alleviate – including latency, jitter and packet loss – has
been to provision links with sufficient headroom that congestion
becomes unlikely. This practice is sometimes characterized as
"throwing bandwidth at the problem," but the formulation is
misleading, because it implies that the strategy is thoughtless. In
fact, the tactic of "throwing bandwidth" has more merit and more

staying power than advocates of QoS have been willing to
acknowledge.

At LBNL, we adhere to a "10% rule" for provisioning. When the
utilization of a router or switch interface begins to exceed 10% of
the link speed over a 30-minute average, we upgrade the link.
This rule of thumb is, in part, an outgrowth of the observation that
our monitoring systems do not tell us very much about transient,
peak utilization: we know by comparing actual packet traces with
MRTG data that even 30-second load averages underestimate the
magnitude of bursts.

The "10% rule" is simple, and it works well in practice. Whether
it is economical depends on the market for Ethernet interfaces at
the moment the 10% boundary is crossed: are we forced to
become early adopters, or can we take advantage of commodity
pricing? In practice, the 10% rule generally has not committed
us to the bleeding edge. For example, we do not anticipate
needing to deploy 10 Gigabit Ethernet in production networks for
at least nine months, and interface prices are rapidly falling.
When all costs are carefully accounted for, we believe that
"throwing bandwidth at the problem" is the cheapest antidote to
congestion in our network, and that "throwing protocols at the
problem" will compromise stability. 7

Recently, network researchers have begun to explore how to
achieve some of the tantalizing benefits promised by QoS through
strategic provisioning alone. In other words, they have begun to
ask a more formal version of the question "how much bandwidth
should we throw at the problem?" [13, 19]. At very high link
speeds, that number turns out to be surprisingly low – on the order
of 15% above average utilization, by one account [13].
Furthermore, service providers are reporting success in adhering
to a similar philosophy in the Internet core [1, 15]. This approach
may have been inspired by the dawning realization that the rate of
Internet traffic growth has been overestimated in recent years
[17]. Whether it can succeed in the long run depends on actual
rates of traffic growth, and on rates of decrease in the cost of
transmission capacity. Once again, economic and market forces
wholly unconnected with the architecture of QoS are central to its
operational fate.

The tactic described above – ie, provisioning conservatively to
accommodate bursts – has sometimes received only perfunctory
treatment by the architects of QoS:

"Bandwidth will be Infinite"

The incredibly large carrying capacity of
an optical fiber leads some to conclude
that in the future bandwidth will be so
abundant, ubiquitous, and cheap that there
will be no communication delays other than
the speed of light, and therefore there

7Natrually, ISPs face different economic constraints than
enterprises when provisioning link capacity. For a brief
overview of current norms in ISP capacity engineering, see [1].

will be no need to reserve resources.
However, we believe that this will be
impossible in the short term and unlikely
in the medium term. While raw bandwidth
may seem inexpensive, bandwidth provided
as a network service is not likely to
become so cheap that wasting it will be
the most cost-effective design principle.
Even if low-cost bandwidth does eventually
become commonly available, we do not
accept that it will be available
"everywhere" in the Internet. Unless we
provide for the possibility of dealing
with congested links, then real-time
services will simply be precluded in those
cases. We find that restriction
unacceptable. [4]

This passage from RFC 1633 begins by caricaturing the argument
it wants to refute. In fact, no one believes that bandwidth will be
infinite; but at any given time, it may be sufficiently plentiful and
inexpensive that it creates an attractive alternative to QoS. The
authors assert that bandwidth "is not likely to become so cheap
that wasting it will be the most cost-effective design principle" –
but this claim cannot be persuasive in the absence of data about
actual prices and predicted demand. In addition, the authors
appear to assume that unused bandwidth is "wasted" in the same
sense that uneaten food is wasted, but of course that is not the
case. As Meyer and Bush have observed, in "modern Internet
backbones the unused capacity is actually protection capacity" for
various low-probability events (fiber cuts, extended power
outages, equipment failures) [7; also see 1].

The final sentences of the paragraph are quite revealing. It is true
that some links in the Internet will always be congested, but
asserting that "we" need to "provide for the possibility of dealing
with congested links" in such cases undermines the justification
for a complex, end-to-end QoS architecture, as described in the
body of the RFC. In other words, defining Quality of Service as a
technique for coping with the possibility of isolated congestion
reduces the scope of the concept substantially. We are left with
something resembling minimalist Diffserv, which falls short of
providing the rich service model originally envisioned for QoS.

4. Conclusion
Remarkable intelligence and energy have been lavished upon the
architectural design of QoS, but much less attention has been
devoted to careful analysis of the relevant problem space from an
operational or economic perspective. This discrepancy is
symptomatic of a broken (or attenuated) feedback loop between
network operations and research. Ideally, there would be constant
exchange of information between these two domains, but in
practice they tend to be mutually insular. The number of people
who are comfortable in both worlds is relatively small, as is the
number of institutions designed to bridge the gulf.

This rift has harmed the process of protocol design by shielding it
from information about the daily experience of failure in large-
scale networks – information that is crucially important in trying
to estimate what I have called the functional limits of deployable

complexity. Unless the architecture of QoS is calibrated with
these limits in mind, it will almost certainly continue to suffer
from a chronic failure to thrive.

5. Acknowledgements
For generous feedback on earlier drafts of this paper, I am
grateful to Mike Bennett, Jim Leighton, Sally Floyd, and Ion
Stoica, as well as the anonymous reviewers. I owe a special debt
to Ted Sopher, a steadfast advocate of design simplicity at LBNL,
and the origin of many ideas and principles I have articulated
here.

6. References

[1] R. Atkinson. An ISP Reality Check. Presentation to IEprep,
IETF 55, Nov 2002. http://www.ietf.cnri.reston.va.us/
proceedings/02nov/219.htm#slides.

[2] G. Armitage. Quality of Service in IP Networks. Macmillan
Technical Publishing, Indianapolis IN, 2000.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W.
Weiss. RFC 2475, An Architecture for Differentiated Services.

[4] R. Braden, D. Clark, and S. Shenker. RFC 1633, Integrated
Services in the Internet Architecture: an Overview.

[5] J. Burrescia and J. Leighton. DOE NGI Testbed: Project
Close Out Report. http://www.es.net/hypertext/welcome/ pr/
DOE_NGI_TESTBED_REPORT3_Dec01.pdf

[6] R. Bush. Complexity – the Internet and the Telco
Philosophies, a Somewhat Heretical View. NANOG 29, Oct
2002. http://www.psg.com/~randy/021028.nanog-complex.pdf

[7] R. Bush and D. Meyer. RFC 3439, Some Internet
Architectural Guidelines and Philosophy.

[8] B. Carpenter and K. Nichols. Differentiated Services in the
Internet. IBM Research Report. http://domino.watson.ibm.com/
library/Cyberdig.nsf/398c93678b87a12d8525656200797aca/8efe
46a5de7e3b8f85256b5e003c5883?OpenDocument

[9] N. Christin and J. Liebeherr. A QoS Architecture for
Quantitative Service Differentiation. IEEE Communications,
41(6), June 2003.

[10] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D.
Balensiefen. Deployment Issues for the IP Multicast Service and
Architecture. IEEE Network magazine special issue on

Multicasting, 14(1):78-88, January/February 2000.
ftp://ftp.sprintlabs.com/diot/xcast-deployment.zip

[11] S. Floyd and R. Atkinson, eds. Concerns with Network
Research Funding. Presentation to the IETF 56 plenary.
http://www.ietf.org/proceedings/03mar/slides/plenary-
19/index.html

[12] S. Floyd and E. Kohler. Internet Research Needs Better
Models. First Workshop on Hop Topics in Networks.
http://www.icir.org/ models/hotnetsFinal.pdf

[13] C. Fraleigh, F. Tobagi, and C. Diot. Provisioning IP
Backbone Networks to Support Latency Sensitive Traffic.
http://ipmon.sprintlabs.com/pubs_trs/pubs/cdiot/
infocom03_provisionbb.pdf

[14] G. Huston. RFC 2990, Next Steps for the IP QoS
Architecture.

[15] D. Meyer. Some Thoughts on QoS and Backbone Networks.
Presentation to IEprep, IETF 55, Nov 2002.
http://www.ietf.org/proceedings/02nov/slides/ieprep-4.pdf.

[16] K. Nichols, V. Jacobson, and L. Zhang. RFC 2638, A Two-
bit Differentiated Services Architecture for the Internet.

[17] A. Odlyzko. Internet Growth: Myth and Reality, Use and
Abuse. http://www.dtc.umn.edu/~odlyzko/doc/
internet.growth.myth.pdf

[18] I. Stoica. Stateless Core: A Scalable Approach for Quality of
Service in the Internet. Ph.D. Dissertation, Carnegie Mellon
University, Dec. 2000.

[19] T. Telkamp. Traffic Characteristics and Network Planning.
NANOG 26, Oct 2002. http://www.nanog.org/mtg-
0210/ppt/telkamp.pdf

[20] W. Willinger and J. Doyle. Robustness and the Internet:
Design and Evolution. http://netlab.caltech.edu/pub/papers/
part1_vers4.pdf

[21] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New Resource ReSerVation Protocol. IEEE Network,
vol. 7, Sept 1993.

	Introduction: Failure to Thrive
	Complexity and Failure
	Throwing Bandwidth
	Conclusion
	Acknowledgements
	References

